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Regular Boundary Integral Formulation for the
Analysis of Open Dielectric/Optical Waveguides

Yukio Kagawa, Fellow, IEEE, Yonghao Sun, and Zaheed Mahmood

Abstract—Regular boundary element method is employed for
the variational formulation of Helmholtz equation that governs
the waveguiding problems. The problems are defined on the
boundary as usual, but like in the charge simulation method, the
source points associated with the fundamental solutions are allo-
cated outside the domain so that the singular integrals which oc-
cur in the standard boundary element procedure can be avoided.
First, the formulation is developed for the two-dimensional (2-
D) scalar Helmholtz problem solving for the axial components
of either electric or magnetic fields. Then the formulation is
extended for the analysis of dielectric waveguides of open type
incorporating axial components of both electric and magnetic
fields, for the solution of the propagating modes which are
generally of hybrid types. Very close agreements have been found
when the solutions obtained by the present formulation are
compared with the ones obtained by different methods. One merit
of the extended formulation is that it has been fixed to suppress
the spurious solutions.

I. INTRODUCTION

ESPITE THE FACT that many things are common
between the boundary element method (BEM) and the
charge simulation method (CSM) [1] there exists an underlying
difference in their treatment of boundary value satisfaction.
In BEM, the boundary of the domain under consideration is
divided into elements and the value at an arbitrary point on
the boundary is expressed by the proper interpolation of the
nodal values. One can then write boundary integral equation
associated with the Green functions, resulting in discretized
simultaneous linear equations for the nodes. In CSM, a form
of linear combination of Green functions is chosen to sat-
isfy the boundary values evaluated at discrete points for the
simulated charges arranged outside the domain, along the
boundary. One drawback of the BEM is that the kernel of
the boundary integral consists of a singular function often
difficult to integrate. Under this circumstances, Patterson and
Sheikh proposed a regular boundary element method which is
the same as the conventional BEM except that the singularity
associated with the fundamental solutions is eliminated by
shifting the source terms outside the domain as in CSM,
obtaining a system of regular boundary integrals. Patterson
applied this approach successfully to fluid and elastic problems
[2]. Honma also solved convective diffusion problems [3]
using the same approach.
The errors of solutions obtained by conventional and regular
BEM are known to be pronounced in the vicinity of the
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boundary, while the same for CSM depend on the locations
chosen for the simulated charges. It is therefore necessary
to arrange the simulated charges appropriately for obtaining
accurate solutions. Taking proper consideration of these things,
we have proposed variational boundary element formulations
and applied them to the Laplace and Helmholtz problems
[4]-[5]. Then in order to avoid singular integrals, we also have
developed [6] the variational formulation of regular boundary
integrals for the Laplace problems. Here in this paper, we
apply the same approach of regular boundary element method
based on variational principle to Helmholtz problems.

First, the variational formulation of regular boundary
integral is developed for waveguide analysis governed by
Helmholtz equation. The formulation is applied to a simple
hollow rectangular waveguide and dielectric slab and ridge
loaded waveguide, solving for the wave number of the
propagating modes which are of transverse type. Then the
formulation is shown to be extended for the application to
unbounded problems of a dielectric/optical waveguide. As the
dielectric waveguides are of open type, the exterior domain
is considered to be extended to infinity. The BEM provides
advantages right at this point, because it can easily be applied
to open-type problems. Sano and Kurazono [7] also used BEM
for the open-type eigenvalue problems. For the application to
open-type dielectric waveguiding problems, the extensions
made in the formulations are:

1) As the propagating modes are hybrid, the variational
formulation incorporates the axial components of both
electric and magnetic fields which are coupled by the
continuity conditions of the electromagnetic fields at the
interface between dielectrics;

2) The formulation is modified to yield spurious-free so-
Iutions by incorporating explicitly the continuity of the
tangential derivatives of the fields.

Only the drawback of the present formulation is that as the
wave number to be resolved spreads out in the discretized
equation in a scattered manner, it must be solved by determi-
nant search technique.

II. VARIATIONAL BOUNDARY ELEMENT FORMULATION
The two-dimensional (2-D) Helmholtz equation represent-
ing a wave equation and the associated boundary conditions
are given by
V3¢ +k2p=0 inQ
p=¢ il
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o _ .
on 1
where k is the wave number, n is a unit normal vector pointing
outward at the boundary, I' = I'; + I'> denotes the boundary
of the domain Q,q3 is the potential and § is the flux of
known quantities prescribed over the boundaries I'y and I's,
respectively. The energy functional corresponding to (1) is
given by

I(¢) =

in I'y ¢))

¢gdl’.  (2)
2

/ (V) — K247} dar

Based on the hybrid method of P.Tong and Rossettos [8], on
defining ¢ and ¢ generally over the boundary I', (2) leads to
the hybrid functional

(g, §,q) = 1 /Q (V4)? - K47} do

- [0-daar-

Applying variational principle to (3) and making the functional
stationary with respect to ¢, ¢ and §, the governing equation

V26 +k2$=0 inQ

$gdl.  (3)
T2

and the boundary conditions

¢=q~5 onT
¢=¢ onTy
g=4¢ onl
G=q4 only

are obtained for the Helmholtz problem. After carrying out
integration on (3) by parts, the domain integral is eliminated
leaving a functional which consists of boundary integrals only

(¢, &, q,) = / gq dT— / (p-dgar- [ diar. @

At this point, the discretized formulation for the boundary
element method is considered. Locating simulated charges
a;j(j = 1,2,---, L) outside the domain, the potential at any
arbitrary point  in the field is expressed in terms of the linear
combination of the contribution from each source a; as

L

¢ =Y ¢nia; = {9} {a} )

j=1

where
{0} = {¢7.5, - 9L}, {a} ={aiaz---ar}

¢, is the fundamental solution whose value is evaluated
at point ¢ for a unit source given at point j outside the
domain, and o is the unknown coefficient associated with
the simulated charge source at location j. The boundary is
divided into elements I',,,(m = 1,2,---, M). The potential at
the point 7 within the element m is expressed in terms of the
interpolation between the nodal values as

={N;}"{$}m and G ={Ng}"{@}m (6
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where

{‘;s}m = {ngl(];mZ}’ {‘j}m = {Qm16m2}

are the potential and the flux vector defined at the terminals
of the element, that is, at the nodes. The elements considered
here are constant clements for which all the components of
the interpolation vector {3} and {N;} become 1/2, since at

any point of an element, the values of ¢3Z and ¢; are taken to
be the average of the terminal values of the element.

The fundamental solution for the Helmholtz equation and
its normal derivative are given [9] by

. 1
¢]z _4\/— (2)(kR]i) a’nd

095, _ n X +n,Y
on  4./—1 R,,

where Ry, = /[ X2+ Y2, X =2; —x;,Y = y; — yZ,H(Q)
and H 1(2) are, respectively, the zeroth and first order Hankel
function of second kind, and n, and n, are, respectively,
the directed cosines, the x and y directed components of the
outward unit normal n. Substitution of (5) and (6) in (4) leads

kH® (kR;,)

to
M
b = 3 {5 [ 650 a,
- / (6 - )3 dTs — [ et drm}
r. I
= 2o} [H]{e} - {(o}7IG}a)
+ {1} — {$}7[P)a} @)
where
($y = {12+ dm}, {d} = {@d2---dm} and
{§} ={d1da---dn}, (N < M)

and the components of the matrices [H] and [G] are given by
0d%,.
]k - Z / ¢Jm ak dI‘

Gim = / i dlm

‘771{""“1727'

JLom=1,2---,M).

In (7), [L] and [N] are diagonal matrices, where the component
of [L] corresponds to the length of each element of the
boundary I" and that of [N] correspond to the length of each
element of the boundary I's.

After applying variational principle to (7) by making the
functional stationary with respect to o and ¢, we obtain

oL, =[Fl{a} - [G}{g} =0 ®)
o1; = [L}{9} - [G]"{o} = {0}. ©

The equation obtained by eliminating o from (8) and (9) is
given by

[K]{¢} — [G){g} = {0} (10)
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where [K] = [F][R] with [R] = (|[G]~1)?[L] and
Py = %,;/rf;m?g% dlr,

M
+5m2:jl/rm¢km 2 gL,

For the 2-D Helmholtz problem, (10) represent the regular
boundary element formulation based on variational princi-
ple. Note that as the simulated charges are arranged outside
the domain, the kernels involved with (10) do not contain
any singular expressions so that the integrals can readily be
evaluated.

A. Application to Hollow Waveguides

The application of the regular boundary element formulation
of the previous section is made to the modal analysis of
hollow waveguiding problem. It is an eigenvalue problem of
free vibration type. The eigenvalue formulation correspond to
TE and TM mode analysis in accordance with the applied
boundary conditions of {¢} = 0 and {¢} = 0, respectively.

For TE mode, (10) becomes

(K (k)){$} = {0}. (11)

Here the complex functions [K (k)] and {¢} are divided into
their real and imaginary part as

[K(k)] = [Kgr] + [K1] and {¢} = {¢r}+ {1}

so that (11) can be written [10] as

Kr] [Kd][(6r}] _
[[KI] [KR]] [{qgl}] = {0} (12)
The eigenvalues k& are are the roots of the determinant
[Kr] [Ki]|_
det|ir] (ica)| =" (13)

Again, considering only the real part of the equations corre-
sponding to eigenvalue k, we have

det [[Kg]| = 0. (14)
For TM mode, (10) becomes
[Gl{g} = {0}. (15)

As [G] and {q} are again complex, the roots or the eigenvalues
are obtained by the same way as described for TE modes.
At this point, a rectangular hollow waveguide is studied
and the eigenvalue solutions for the TM and TE modes are
compared with the theoretical ones. The matrices [K] and
[G] become complex quantities as they comprise integrals
associated with hankel functions and exponential functions.
As the resolving parameter k spreads out in the formulation in
a scattered manner, the formulation can no longer be solved
by standard eigenvalue solver. Under this circumstances, (11)
and (15) are solved by determinant search technique where the
numerical computations are carried out by putting different
values of k for a certain span of interest. The values of &
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Fig. 1. Rectangular Helmholtz field with boundary elements, nodes, and
simulated charges.
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Fig. 2. Variation of determinant value for wave number.

are taken to be its solutions at which the determinant of the
system matrix becomes zero. Thus, (13) and (14) are solved
for k and detailed searching is carried out at the regions where
the values of both the determinants approach zero. Fig. 1
shows a rectangular Helmholtz field where the rectangular
boundary is shown to be divided into 24 constant elements
and the same number of the simulated charges are shown
to be allocated outside the domain along the boundary. The
determinant values are plotted in Figs. 2 and 3 for TE and
TM modes, respectively, for different values of k. The results
are compared in Table I with the theoretical ones and the ones
obtained by dual reciprocity method (DRM). One of the entries
of the DRM column is shown vacant as the solution obtained
is far away from the theoretical one.

Next, the eigenvalue solutions of a hollow rectangular
waveguide [11] with mixed boundary conditions are obtained
by applying the present formulation. The mixed boundary
conditions are

¢)=(}§=0 0nF1

—8-?:(?:0 OIl]._‘z.
on

Substitution of (16) into (10) leads to

) | )| = e ()] an

(16)

Here the subscripts 1 and 2 represent the components corre-
sponding to the boundaries I"; and I's, respectively, where
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TABLE I
ANALYTICAL AND NUMERICAL SOLUTIONS OF SOME LOWER MODE

Mode Exact o DRM
TE,, 3.14 3.14 3.19
TEo1 5.23 5.23 552
TE 6.10 6.10 6.24
TE, o 6.28 6.28 6.7
™, 6.10 6.10 -

DRM : Calculated by Dual Reciprocity Method
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Fig. 4. Rectangular Helmholtz field with mixed boundary conditions and
element division.
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Fig. 5. Variation of determinant value for wave number.

known quantities of potential and flux are prescribed. Rear-
ranging (17), we obtain

o {0} = -m @a|f] as

which is of the form
[Al{z} = [C]{0}

(19) represents the eigenvalue problem defined by simultane-
ous (10), where the boundary conditions are given by (16).
The condition for the nontrivial solution is given by

det |[A]] = 0.

(19)

(20)

Fig. 4 shows rectangular Helmholtz field in which the mixed
boundary conditions are shown to be prescribed on different
parts of the rectangular boundary. The boundary is divided into
16 constant elements and the same number of the simulated
charges are allocated outside the domain along the boundary.
The variation of the determinant value with respect to the
wave number is shown in Fig. 5. The eigenvalues or the wave
numbers for different modes are furnished in Table II.

III. DIELECTRIC LOADED WAVEGUIDES

A. Formulation

An arbitrarily shaped metal walled waveguide is considered
which is composed of two homogeneous regions of different

TABLE 11
ANALYTICAL AND NUMERICAL SOLUTIONS OF SOME LOWER MODE
Present DRM
Mode | Exact method DRM [12]
TE; ¢ 1.74 1.74 1.75 1.74
TE, ¢ 523 5.23 5.39 524
TEy; | 8.04 8.04 8.49 -
TE,p 8.72 8.72 9.74 8.80

DRM : Calculated by Dual Reciprocity Method
DRM [12] : Results given by Partridge, Brebbia

permittivities and is uniform along the axial direction. The
boundary element divisions for the different dielectric regions
are carried out independently. The formulation entails proper
considerations in the treatment of the coupling conditions
along the interface between the two dielectrics. Along the
boundary, the continuity conditions for the tangential com-
ponents of the electric field £ and magnetic field H are given
by

Ey =Eyp and Hy = Hy

Considering the propagation along the axial (z) direction, the
2-D Helmbholtz equation is given by

Vip+k2p=0 inQ (1)
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where

K=k - k=w/Ehm, ko =w/Eom
w is the angular frequency,  is the propagation constant
and k is the wave number corresponding to materials that
constitute different parts of the inhomogeneous waveguide
structure. Here € and y represent, respectively, the permittivity
and permeability of the medium, and the subscript ¢ and 0
correspond to the medium ¢ and free-space, respectively. The
material properties are defined as ¢, = €,,&9 and p; = s lig,
where £, and pu, are, respectively, the relative permittivity
and permeability of the mediom.

For the dielectric slab loaded waveguide structure of Fig. 6
which comprises two different material regions, the discretized
boundary element formulation is given by

K K {151} _ {a} | _
ILsY [1111[{¢11}] [1G1] [Gu]][{ql[}]—{o}
22)

ks [Korll| 122 | —(1Ga] [Ganl [ 122} | = {0},
{¢ar} {Gar}
(23)

Here the subscripts 1 and 2 correspond to the components
contributed from medium 1 and 2, respectively, while the
subscript I correspond to the components contributed form
the interface boundary between the two dielectrics. In the
formulation for the TE mode (boundary condition: {§} =
{0}), the necessary continuity conditions required for the
coupling along the interface boundary are given by

(i;lI = (;52] - QZ;I:
G =YGer = qr,

(Hzl = Hz2)
(Eyl = Ey2)

where
_ _NZ(kgerl - ﬁQ)
p1(k§ers — B2)
The above conditions are used to couple the (22) and (23).
After some rearrangement, the combined equation is given by

{$1}
[[Kll [K1] [~Gar] (0] ] {¢1}
0] [Ka] [Gar] [K3] %I}}

[ Ellg-e e

Considering the boundary conditions, £ becomes the roots of
the determinant

[[Kll (K] [-Gu] (0]
0] [K2r] [vGar] [Ko]

Again, the coupling conditions along the interface boundary
for TM mode (boundary conditions: {¢} = {0}) are

$rr =dar = b1, (E.1 = Es9)
Gir =nder = 41, (Hy1 = Hy2)

det

] 1 = 0. (25)
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Fig. 6. Dielectric loaded waveguide: boundary elements, nodes and simu-
lated charges.

where

_5r2(k(2)5r1 - 62)
Erl(k(%a'r‘Z - ﬂ2)

(22) and (23) are again combined by the above coupling
conditions to yield after some rearrangement

[[Kl] 0] ] [{%1}]

'f’:

0] [Ka]||{#2}
{a1}
_[[Gl] [0] [-Kii] [Gu]] {2} = {o).
[0] [G2] [~Karl [Garl| |{4:}
{ar}
(26)

The eigenvalues k are obtained as the roots of the determinant

[G1] [0] [G11]
detl[ [0] [G9] [nGar

ol man]l=e e

B. Application to Dielectric Slab Loaded Waveguides

Fig. 6 shows the cross-sectional structure of the dielectric
loaded waveguide investigated as a numerical example. Half
of the waveguide is filled with dielectric material whose
permittivity and permeability are equal to 2.25 and 1, re-
spectively. The other half of the waveguide is assumed to be
vacuum. The figure also shows the division of the boundary
into 32 constant elements with the same number of simulated
charges allocated outside the domain along the boundary. The
formulation described in the previous section is solved for
the eigenvalues by determinant search technique. By applying
the boundary conditions for TE mode ({§} = 0), dispersion
characteristics are obtained for the dominant and a couple of
higher modes, which are compared in Fig. 7 with the exact
ones [13]. Fig. 8 shows the dispersion characteristic for the
mode obtained by applying the boundary conditions for TM
mode ({¢} = 0).

The next example taken for the demonstration is the dielec-
tric ridge waveguide of Fig. 9. The eigenvalue solutions of the
wave numbers are obtained for different values of permittivity
of the medium with y = pg = 1.0. The solutions are compared
in Table I with the analytical ones [14] and the ones obtained
by the TLM method [15], where it is evident that the present
formulation exhibits better accuracy.
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TABLE 1T
CuTOFF OF DOMINANT MODE IN DIELECTRIC RIDGE WAVEGUIDE

£, Ana}cyﬁc [14] | John's TLM[15]| Present

oa k pa k pd

2 2.606 2.62 2.605

3 2.352 2.36 2.355

4 2.204 222 2215

6 2.024 2.04 2.045

8 1.936 1.96 1.955

IV. OPEN TYPE DIELECTRIC/OPTICAL WAVEGUIDE

A. Formulation

Considering an arbitrarily shaped inhomogeneous dielec-
tric waveguide, the governing equation for the longitudinal
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Fig. 10. Step-index fiber.
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Fig. 11. Element division and simulated charge allocation for one quarter of

a circular step-index fiber.

fields (I, H,) of the guided propagating wave along the z
direction is given by the same Helmholtz equation of (21),
except that the equations for both fields are now considered
simultaneously as

V2E, + (k} - B2)E, =0
V2H, + (k¥ — B%)H, =0. (28)

Fig. 10 shows the structure of an axially symmetrical optical
waveguide where the region 24 constitutes the clad part, and
the region {1p, the core part of the waveguide. As shown
in Fig. 11, the element divisions for the different dielectric
regions are carried out independently allocating the simulated
charges separately for both interior and exterior regions. By
applying regular BEM based on variational principle, the
discretized equations are obtained as follows:

ez - 16 5 b =0

R T T
iy - @) 22 ] <o
oy -Gl =0 a0
where
[K*]=[F][RY) i=A,B.
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In the above equations, the matrices are given by the ones
described in Section II, only that, the superscripts A and B
correspond, respectively, to the regions 24 and g, from
which the matrices are contributed. The need for the com-
bination of F, and H, in the governing equation is due
to the fact that the mode propagating through a dielectric
waveguide is of hybrid type, having both F, and H,. The final
equation is derived from the combination of the discretized
(29) and (30) on application of the proper boundary conditions
along the interface boundary. The tangential components of the
electric and the magnetic fields should be continuous across
the interface yielding

EZ =E}, HP=HZ,

BP = -Bp, P =-H}

(€2Y)

where E, and H, are the transverse components of electric
and magnetic fields, respectively, which are tangential to the
boundary. The tangential components of the electromagnetic
fields are given in terms of the normal and tangential deriva-
tives of the axial components as

T R2 B2\ On wp, Ot
i __ —ngosri aEz ﬂ 8Hz
"= k2 — (32 ( WEQEm O ) (32)
Inserting (32) into (31), we obtain
OHEB _ _—/I,A(kz - 5% OH;“
In pp(ky — B2 on
_B (1o _Ee=p\oES
wpp \ k% — B2
OEP _ coa(K} — B?) IS
on erp(ky — B2) On
B _ kp-p*\oHZ
P (1.0 k,%x 7)ot (33)
Thus the discretized equation obtained for (30) is
Bl A ErA(k%; - 5% 5, [ OEZ
[K ]{Ez }+ ET‘B(ki - /62) [G ] an
P .
= “2oP)a)
A
KoY a2) + A0 =B g [ 2
= ZLiem)Eay. (34)
Zy

where the component of matrix [C'?] is given by
CB

2o (ro-th=) [ s

Here 8¢ /0t represents OE2 /0t or OH | Ot. Zj is the intrinsic
impedance of the free space. Combining (34) and (29), the
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following matrix equation is derived:

K4 -[G4 o] 0] B2}
OFA
K7) al6?] -22(c®) [ e
0o R et ]
i OB S B I (o
o
{0} o
{0)
where
_ el =) palh )
ekl —02) 0 up(K% - 52

Since k enters in (35) in a scattered manner, it can no longer
be solved by the standard eigenvalue solver but again by the
determinant search technique.

When the example of the optical waveguide (circular step-
index fiber) of Fig. 10 is solved by using (35), spurious
solutions are encountered along with the physical ones. This
also happens when solved by conventional BEM. As explained
by Sano [7], the reason behind the occurrence of these spurious
modes is the lack of continuity of tangential derivatives
of the axial fields. Sano has shown that incorporation of
the continuity of the tangential derivative of the fields does
suppress the spurious modes. As suggested by Sano, we used
OF, /0t and OH, /0t as the unknowns instead of E, and H,, in
the original formulation and as expected, we have also found
the solutions completely free of the spurious ones. 9F, /0t
and OH, /Ot are given by

/Ez(f):/o 9B: 4+ B,(0)

H(r) = / O: i+ ,(0) (36)
o Ot

where F,(0) and H,(0) are the values of E, and H,,

respectively, at the reference point taken on the boundary along

the integration path, and the integral is made from the reference

point to the point 7. For a round path of integration forming

a closed loop ‘

OF, oL, -
Bt dt =0, > ot 37
The new unknowns introduced are
T
3EA OE4 OE4
{¢e}— EA() 2 ... —
8t1 8t2 8t1\1_1
() = |2Bf 088 0B T
et = _811.1 anz BnM
- T
OHA OHf  8Hj;
A i A M-1
{gn} = | HZ(0) ot, Oty 8tM_1]
‘ }_'3Hi“c‘)H§‘m8Hj& T
s = L Bnl 31&2 8nM
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Incorporation of the new unknowns entails the following
continuity conditions along the interface boundary:

E2(0)=EB(0), HZ2(0)=HE(0),
oEZ  OEP  9HZ  OHP
o — ot 8t ot

Making use of (36)—(38) and following the same way adopted
to obtain (35), the final system of matrix equation is derived as

(38

K4 e [ 0
K% wiem -2pr o | [
o o KM 64| i)
D% 0 K7 ale?)) Hed
Zy
0}
= }g% 39
0}

In (39), the matrices [K?] and [GY] (i = A,B) are the
same, respectively, as given by the ones in (10), only that
the components of [K 5] are now arranged as

Ki1i  —Kyo —Kim

Ky —Koa —Koym
(K7 = : : :

Ky —Kar ~Kym

and [L'] no longer remains a diagonal matrix, but takes the
form of the [L*] matrix shown at the bottom of the page. And
finally, [D®] is given by the second matrix at the bottom of
the page.

B. Applications

1) Circular Step-Index Fibers: The structure of the axially
symmetrical circular step- index fiber is shown in Fig. 10. For
symmetry, one quarter of the structure is taken for simulation
by the method described in subsection A. Fig. 11 shows the
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Fig. 12. Dispersion curve for dominant and higher modes for a circular
step-index fiber.

division of boundary of the quarter of the circular cross section
into ten constant elements and the allocation of the same
number of simulated charges. Note that the simulated charges
are allocated individually for both the exterior and the interior
domain on outside of the respective domain. The computation
is carried out by assigning values of [ for a certain range
of interest and solving (39) by determinant search technique.
The dispersion curves obtained for the dominant and the next
higher modes are shown in Fig. 12. A good degree of accuracy
of the solutions are reflected from the comparison of the
computed solutions with the exact ones [16]. Comparison is
shown only for the dominant mode since this is the only
mode for which exact solutions are available so far. Field
distributions for the two modes are shown in Figs. 13 and 14,
respectively. In order to have an idea about the computational
measure of (39), it might as well be worth mentioning here
about the CPU time taken by it. For example, to solve (39) by
determinant search technique for a matrix size of 40 x 40, the
CPU time taken is 0.76 sec. The computations are obtained
on a Dynus GAIA 275 AXP personal super computer (CPU:
275 MHz DEC 21064A).

2)  Rectangular Dielectric Waveguide: Next, employing
the same method as described in the previous subsection,
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Magnetic Field .

Fig. 13. Field distributions for the HE;1; mode.

Electric Field Magnetic Field
Fig. 14. Field distributions for the HE3; mode.
le 2a J ™
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ny = 1.00

Fig. 15. Rectangular dielectric waveguide.

simulation is carried out for the rectangular waveguide
shown in Fig. 15. Again, for symmetry, one quarter of the
rectangular structure is considered. As shown for the circular
step-index fiber, here, in the same way, the quarter of the
rectangular boundary is divided into 10 constant elements and
the same number of simulated charges are allocated outside
the domains along the boundary. Fig. 16 shows the dispersion
curves obtained for the modes EY; and Ef;. For comparison,
solutions obtained by Goel [17] are also shown which are
found to be in well agreement with the ones obtained by the
present method. Field distributions for the two modes are
shown in Figs. 17 and 18, respectively.

V. CONCLUSION

We have developed and demonstrated the variational ex-
pressions for the regular BEM in the waveguide analysis.
Gradual developments of the formulations have been laid
down showing its versatile application in the waveguiding
problems starting from simple hollow waveguides dealing
with transverse modes to dielectric and optical waveguides
dealing with hybrid modes. As the singular points of the
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Fig. 16. Dispersion curve for dominant and higher modes for a rectangular
dielectric waveguide.
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Fig. 17. Field distributions for the Ef; mode.
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Magnetic Field

Fig. 18. Field distributions for the E§; mode.

fundamental solutions are located outside the domain, the
formulations are enriched with the merit of avoiding sin-
gular integrals. Moreover, the boundary element approach
has facilitated the formulations rendering an easy application
to unbounded structured problems. For the dielectric/optical
waveguide analysis, the formulation is fixed to yield spurious-
free solutions. What offsets the merits by a little is that as
the parameter to be resolved spreads out in the discretized
equation in a scattered manner; the formulations cannot be
solved by standard eigenvalue solver but by determinant search
technique. ’
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