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Regular Boundary Integral Formulation for the

Analysis of Open Dielectric/Optical Waveguides
Yukio Kagawa, Fellow, IEEE, Yonghao Sun, and Zaheed Mahmood

Abstract-Regular bouudary elemeut method is employed for

the variational formulation of Hehnholtz equation that governs
the waveguiding problems. The problems are defined on the
boundary as usual, but like in the charge simulation method, the

source points associated with the fundamental solutions are allo-
cated outside the domain so that the singular integrals which oc-

cur in the standard boundary element procedure can be avoided.
First, the formulation is developed for the two-dimensional (2-
D) scalar Helmholtz problem solving for the axial components

of either electric or magnetic fields. Then the formulation is

extended for the analysis of dielectric wavegnides of open type

incorporating axial components of both electric and magnetic

fields, for the solution of the propagating modes which are

generally of hybrid types. Very close agreements have been found
when the solutions obtained by the present formulation are
compared with the ones obtained by different methods. One merit
of the extended formulation is that it has been fixed to suppress

the spurious solutions.

I. INTRODUCTION

D
ESPITE THE FACT that many things are common

betweeu the boundary element method (BEM) and the

charge simulation method (CSM) [1] there exists an underlying

difference in their treatment of boundary value satisfaction.

In BEM, the boundary of the domain under consideration is

divided into elements and the value at an arbitrary point on

the boundary is expressed by the proper interpolation of the

nodal values. One can then write bounday integral equation

associated with the Green functions, resulting in discretized

simultaneous linear equations for the nodes. In CSM, a form

of linear combination of Green functions is chosen to sat-

isfy the boundary values evaluated at discrete points for the

simulated charges arranged outside the domain, along the

boundmy. One drawback of the BEM is that the kernel of

the boundary integral consists of a singular function often

difficult to integrate. Under this circumstances, Patterson and

Sheikb proposed a regular boundary element method which is

the same as the conventional BEM except that the singularity

associated with the fundamental solutions is eliminated by

shifting the source terms outside the domain as in CSM,

obtaining a system of regular boundary integrals. Patterson

applied this approach successfully to fluid and elastic problems

[2]. Honma also solved convective diffusion problems [3]

using the same approach.
The errors of solutions obtained by conventional and regular

BEM are known to be pronounced in the vicinity of the
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boundary, while the same for CSM depend on the locations

chosen for the simulated charges. It is therefore necessary

to arrange the simulated charges appropriately for obtaining

accurate solutions. Taking proper consideration of these things,

we have proposed variational boundary element formulations

and applied them to the Laplace and Helmholtz problems

[4]-[5]. Then in order to avoid singular integrals, we also have

developed [6] the variational formulation of regular boundary

integrals for the Laplace problems. Here in this paper, we

apply the same approach of regular boundary element method

based on variational principle to Helrnboltz problems.

First, the variational formulation of regular boundary

integral is developed for waveguide analysis governed by

Helmholtz equation. The formulation is applied to a simple

hollow rectangular waveguide and dielectric slab and ridge

loaded waveguide, solving for the wave number of the

propagating modes which are of transverse type. Then the

formulation is shown to be extended for the application to

unbounded problems of a dielectric/optical waveguide. As the

dielectric waveguides are of open type, the exterior domain

is considered to be extended to infinity. The BEM provides

advantages right at this point, because it can easily be applied

to open-type problems. Sano and Kurazono [7] also used BEM

for the open-type eigenvalue problems. For the application to

open-type dielectric waveguiding problems, the extensions

made in the formulations are:

1)

2)

As the propagating modes are hybrid, the variational

formulation incorporates the axial components of both

electric and magnetic fields which are coupled by the

continuity conditions of the electromagnetic fields at the

interface between dielectrics;

The formulation is modified to yield spurious-free so-

lutions by incorporating explicitly the continuity of the

tangential derivatives of the fields.

Only the drawback of the present formulation is that as the

wave number to be resolved spreads out in the discretized

equation in a scattered manner, it must be solved by determi-

nant search technique.

II. VARIATIONAL BOUNDARY ELEMENT FORMULATION

The two-dimensional (2-D) Helmholtz equation represent-

ing a wave equation and the associated boundary conditions

are given by

V2~+k2~=0 infl

fj=~ inrl
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(1)

where k is the wave number, m is a unit normal vector pointing

outward at the boundary, r = I’1 + rz denotes the boundary

of the domain Q, ~ is the potential and ~ is the flux of

known quantities prescribed over the boundaries 171 and rz,

respectively. The energy functional corresponding to (1) is

given by

Based on the hybrid method of P.Tong and Rossettos [8], on

defining ~ and Q generally over the boundary r, (2) leads to

the hybrid functional

where

{i}m = {iirdimz}> {I}m = {kfLz2}

are the potential and the flux vector defined at the terminals

of the element, that is, at the nodes. The elements considered

here are constant elements for which all the components of

the interpolation vector {iV~ } and {N@} become 1/2, since at

any point of an element, the values of & and @ are taken to

be the average of the terminal values of the element.

The fundamental solution for the Hehnholtz equation and

its normal derivative are given [9] by

/ /
- $+-m- Jddr. (3) where RJi = I/H,x = X, -z,,Y = y, - WH:2)

rs and HI ‘2) are, respectively, the zeroth and first order Hankel

Applying variational principle to (3) and making the functional function of second kind, and n. and nY are, respectively,

stationary with respect to ~, ~ and j, the governing equation the directed cosines, the x and y directed components of the

outward unit normal n. Substitution of (5) and (6) in (4) leads
V2ff+k2$=0 infl to

and the boundary conditions

h=~ onr

are obtained for the Helmholtz problem. After carrying out + {i} T[~]{i} – {4} TH{4} (7)

integration on (3) by parts, the domain integral is eliminated

leaving a functional which consists of boundary integrals only
where

lL~qdr-l(@-~)’dr-L2 J’dr- ‘4) ~~~$:’$fi:’ ‘f~:~~”’”QM} and
H(4, & !7>{) = ~

At this point, the discretized formulation for the boundary

element method is considered. Locating simulated charges

aj(j=l,2, ..., L) outside the domain, the potential at any

arbitrary point i in the field is expressed in terms of the linear

combination of the contribution from each source aj as

where

@j, is the fundamental solution whose value is evaluated

at point i for a unit source given at point j outside the

domain, and aj is the unknown coefficient associated with

the simulated charge source at location j. The boundary is

divided into elements I’m(m = 1,2,... , Al). The potential at

the point z within the element m is expressed in terms of the

interpolation between the nodal values as

ii= {N.J}T{J}772and j, = {iVj}T{@}~ (6)

and the components of the matrices [H] and [G] are given by

(j, k=l,2,.., L,m=l,2,..., M).

In (7), [L] and [N] are diagonal matrices, where the component

of [L] corresponds to the length of each element of the

boundary r and that of [IV] correspond to the length of each

element of the boundary I’z.

After applying variational principle to (7) by making the

functional stationary with respect to Q and ~, we obtain

($IIa = [F]{cY} – [G]{ij} = O (8)

611i = [L]{d} – [G]T{a} = {O}. (9)

The equation obtained by eliminating a from (8) and (9) is

given by

[K]{;} - [G]{j} = {O} (lo)
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where [iY] = [F’] [R] with [R] = ( [G]’1 )T [L] and

For the 2-D Helmholtz problem, (10) represent the regular

boundary element formulation based on variational princi-

ple. Note that as the simulated ch,mges are arranged outside

the domain, the kernels involved with (10) do not contain

any singular expressions so that the integrals can readily be

evaluated.

A. Application to Hollow Waveguides

The application of the regular boundary element formulation

of the previous section is made to the modal analysis of

hollow waveguiding problem. It is an eigenvalue problem of

free vibration type. The eigenvalue formulation correspond to

TE and TM mode analysis in accordance with the applied

boundary conditions of {4} = O and {~} = O, respectively.

For TE mode, (10) becomes

[K(k)]{lj} = {o}. (11)

Here the complex functions [K(k)] and {~} are divided into

their real and imaginary part as

[K(k)] = [KR] + [Kr] and {d}= {JR}+{dI}
so that (11) can be written [10] as

The eigenvalues k are are the roots of the determinant

det [KRI [KII = o.
[K1] [KR]

(12)

(13)

Again, considering only the real part of the equations corre-

sponding to eigenvalue k, we have

det [[KR] I = O. (14)

For TM mode, (10) becomes

[G]{~} = {O}. (15)

As [G] and {Q} are again complex, the roots or the eigenvalues

are obtained by the same way as described for TE modes.

At this point, a rectangular hollow waveguide is studied

and the eigenvalue solutions for the TM and TE modes are

compared with the theoretical ones. The matrices [K] and

[G] become complex quantities as they comprise integrals

associated with hankel functions and exponential functions.

As the resolving parameter k spreads out in the formulation in

a scattered manner, the formulation can no longer be solved

by standard eigenvalue solver. Under this circumstances, (11)

and (15) are solved by determinant search technique where the

numerical computations are carried out by putting different

values of k for a certain span of interest. The values of k

Simulated charges

lu’;’’’~;””i”i*19 18 17 16 15 14 13 12*

J*21
%22
I!

Boundaryelements ill*

lo,,.,..,,; J*23 Boundary nodes 8*

*24 1 2 3/~ 5 6 7*

Fig. 1. Rectangular Helmholtz field with boundary elements, nodes, and
simulated charges.

—

3.0 3.5 4.0 4.5 5.0 5.5
wave number

‘R ‘I ~ : analytical solution: detlKRl ---: det K, KR

Fig. 2. Variation of determinant value for wave number

are taken to be its solutions at which the determinant of the

system matrix becomes zero. Thus, (13) and (14) are solved

for k and detailed searching is carried out at the regions where

the values of both the determinants approach zero. Fig. 1

shows a rectangular Helmholtz field where the rectangular

boundary is shown to be divided into 24 constant elements

and the same number of the simulated charges are shown

to be allocated outside the domain along the boundary. The

determinant values are plotted in Figs. 2 and 3 for TE andl

TM modes, respectively, for different values of k. The results

are compared in Table I with the theoretical ones and the ones

obtained by dual reciprocity method (DRM). One of the entries

of the DRM column is shown vacant as the solution obtained

is far away from the theoretical one.

Next, the eigenvalue solutions of a hollow rectangular

waveguide [11] with mixed boundary conditions are obtained

by applying the present formulation. The mixed boundary

conditions are

q$=J=O onr,

(16)

Substitution of (16) into (10) leads to

WI] [~dl [{42} 1 [1{m}{0} ‘: [[G,] [G,]] ~o} ~ (17)

Here the subscripts 1 and 2 represent the components corre-

sponding to the boundaries 171 and 172, respectively, where
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Fig. 3. Variation of determinant vahre for wave number.

TABLE I

ANALYTICAL AND NUMEIUCAL SOLUTIONSOF SOiYtELOWER MODE

Mode Exact Present
Method

DRM

-%0 3.14 3.14 3.19

TEOl 5.23 5.23 5.52

TEI ~ 6.10 6.10 6.24

TE* o 6.28 6.28 6.71
12345678 9

wave number
—: det IKRI ---: det ‘R ‘1 \ : analytical solution

K! KR
TM] ~ 6.10 6.10

DRM : Calculatedby Dual ReciprocityMethod
Fig. 5. Variation of determinant value for wave number,

TABLE 11

ANALYTICAL AND NUMERICAL SOLUTIONSOF SOME LOWER MODE
known quantities of potential and flux are prescribed. Rear-

ranging (17), we obtain
Mode Exact

l%sent
method DRM :g

[1[[-G] [Kz]] ’91}
{42} [1=[[-~d[G2]] [j (18)

] %0 I 1.74 I 1.74 I 1.75 I 1.74

which is of the form TE2 o I 5.23 I 5.23 I 5.39
I

5.24

[A]{z} = [C]{O} (19)
TEt)l 8.(34 I 8.04 I 8.49 –

(19) represents the eigenvalue problem defined by simultane-

ous (10), where the boundaty conditions are given by (16).

The condition for the nontrivial solution is given by

I ~20 I 8-72 I 8.72 I 9.74 I 8.80

DRM: Calculated by Dual ReciprocityMethod

det IIA]I = O. (20) DRM [12] : Results given by Partridge, Brebbia

Fig. 4 shows rectangular Hehnholtz field in which the mixed

boundary conditions are shown to be prescribed on different

parts of the rectangular boundary. The boundary is divided into

16 constant elements and the same number of the simulated

charges are allocated outside the domain along the boundary.

The variation of the determinant value with respect to the

wave number is shown in Fig. 5. The eigenvalues or the wave

numbers for different modes are furnished in Table II.

permittivities and is uniform along the axial direction. The

boundary element divisions for the different dielectric regions

are carried out independently. The formulation entails proper

considerations in the treatment of the coupling conditions

along the interface between the two dielectrics. Along the

boundary, the continuity conditions for the tangential com-

ponents of the electric field E and magnetic field H are given

by

Etl = Et2 and Htl = Ht2.

Considering the propagation along the axial (z) direction, the

2-D Helmholtz equation is given by

V2~+k2~=0 inn (21)

III. DIELECTRIC LOADED WAVEGUIDES

A. Formulation

An arbitrarily shaped metal walled waveguide is considered

which is composed of two homogeneous regions of different
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where

w is the angular frequency, /3 is the propagation constant

and k is the wave number corresponding to materials that

constitute different parts of the inhomogeneous waveguide

structure. Here e and ~ represent, respectively, the permittivity

and permeability of the medium, and the subscript z and O

correspond to the medium i and free-space, respectively. The

material properties are deftned as et = E~~&O and L& = p~~PO,

where Er and ~r are, respectively, the relative permittivity

and permeability of the medium.

For the dielectric slab loaded waveguide structure of Fig. 6

which comprises two different material regions, the discretized

boundary element formulation is given by

[1
{Jl}

[[~d [~1~11 {jlI} [1
{’i}- [[G][f31]]~11,}={0}

(22)

[1{j2}
[F21 [~2rll {#21) [1{ii2}

- [[G21 [G2111 ~12,} = {0}

(23)

Here the subscripts 1 and 2 correspond to the components

contributed from medium 1 and 2, respectively, while the

subscript 1 correspond to the components contributed form

the interface boundary between the two dielectrics. In the

formulation for the TE mode (boundary condition: {j} =

{O}), the necessary continuity conditions required for the

coupling along the interface boundary are given by

& =&l= (jI, (Hzl = Hz,)

~11 = 7@21 = @, (% = ~,2)

The above conditions are used to couple the (22) and (23).

After some rearrangement, the combined equation is given by

[

{jl}
[Kl] [K1l] [-G,,] [0]

[0] [~21] [AG21] [~21 [%;1[-]
{J2}

-Ri][::11[!%1‘{0} ’24)
Considering the boundary conditions, k becomes the roots of

the determinant

[ 1
det[Kl][KII] [-GII] [0] = ().

[0] [KN] [7Gu] [K,]
(25)

Again, the coupling conditions along ~he interface boundary

for TM mode (boundary conditions: {~} = {O}) are

#,, =&= J,, (E., = I&)

!ilI = ‘V921 = iI, (Hyl = Hy2)

*

*

*

**** xxx x

20

4=+* 1. .~ ., .-. ,, ..- 4
252627281234

****X xx x

Fig. 6. Dielectric loaded waveguide: boundary elements, nodes and sinm-
lated charges.

where

(22) and (23) are again combined by the above coupling

conditions to yield after some rearrangement

[0] [G2] [-K211 [7@211 ;:;[

_ [Gl] [0] [-KII] [Glr]

1[ 1
{{2} = {0}

L{~,} J
(26)

The eigenvalues k are obtained as the roots of the determinant

[ 1
~et[Gil [0] [-Ku] [GuI = ().

[0] [G2] [-K21] [qG21]
(27)

B. Application to Dielectric Slab Loaded Waveguides

Fig. 6 shows the cross-sectional structure of the dielectric

loaded waveguide investigated as a numerical example. Half

of the waveguide is filled with dielectric material whose

permittivity and permeability are equal to 2.25 and 1, re-

spectively. The other half of the waveguide is assumed to be

vacuum. The figure also shows the division of the boundary

into 32 constant elements with the same number of simulated

charges allocated outside the domain along the boundary. The

formulation described in the previous section is solved for

the eigenvalues by determinant search technique. By applying

the boundary conditions for TE mode ({j} = O), dispersion

characteristics are obtained for the dominant and a couple of

higher modes, which are compared in Fig. 7 with the exact

ones [13]. Fig. 8 shows the dispersion characteristic for the

mode obt.ined by applying the boundary conditions for TM

mode ({~} = O).

The next example taken for the demonstration is the dielec-

tric ridge waveguide of Fig. 9. The eigenvalue solutions of the

wave numbers are obtained for different values of permittivity

of the medium with M = W. = 1.0. The solutions are compared

in Table III with the analytical ones [14] and the ones obtained

by the TLM method [15], where it is evident that the present

formulation exhibits better accuracy.
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Fig. 7. Dispersion characteristics for a dielectric loaded waveguide (TE
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TABLE III
CUTOFFOF DOMINANI’ MODE IN DIELECTRIC RIDGE WAVEGUIDE

Analytic[14] John’s TLM [15] Present
E,2

koa k. a koa

2 2.606 2.62 2.605

3 2.352 2.36 2.355

4 2.2rM 2.22 2.215

6 2.024 2.04 2.045
1 I I

8 1.936 1.96 1,955

IV. OPENTYPEDIELECTRIC/OPTICAL WAVEGUIDE

A. Formulation

Considering an arbitrarily shaped inhomogeneous dielec-

tric waveguide, the governing equation for the longitudinal

co

Fig. 10. Step-index fiber.

Simulated charges
for fiB

● *
● /

0

Element M ‘

.
\

● E1ementi

xxx
/

x
II ●

x

/
x ●

Simulated charges!x
●

for QA
x L. . . . .. . .. . . . . . .. . . . . . . .. . . . . .. . Element 1

Fig. 11. Element division mdsimulated chwgedlocation foronequ~erof

a circular step-index fiber.

fields (l? Z,llZ) of the guided propagating wave along the z

directions given by the same Hehnholtz equation of (21),

except that the equations for both fields are now considered

simultaneously as

V2EZ + (k: – ~2)Ez = O

V2HZ + (k; – ~2)Hz = O. (2!3)

Fig. 10 shows the structure of an axially symmetrical optical

waveguide where the region ~A constitutes the clad part, and

the region ~B, the core part of the waveguide. As shown

in Fig. 11, the element divisions for the different dielectric

regions are carried out independently allocating the simulated

charges separately for both interior and exterior regions. By

applying regular BEM based on variational principle, the

discretized equations are obtained as follows:

{}
[KA]{E;} - [GA] ~ = O

{}
[KA]{H:} - [GA] ~ = O (29)

[KB]{-E:}- [r-]{=}=0

(30)[KB]{H:} - [G”]{%} =o

where

[K’] = [F’][R’] i=A,~.
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In the above equations, the matrices are given by the ones

described in Section II, only that, the superscripts A and 13

correspond, respectively, to the regions ~A and ~B, from

which the matrices are contributed. The need for the com-

bination of E= and Hz in the governing equation is due

to the fact that the mode propagating through a dielectric

waveguide is of hybrid type, having both E= and Hz. The final

equation is derived from the combination of the discretized

(29) and (30) on application of the proper boundary conditions

along the interface boundary. The tangential components of the

electric and the magnetic fields should be continuous across

the interface yielding

E; = Et, H: = H:, E; = –Et, H; = –H;

(31)

where Et and Ht are the transverse components of electric

and magnetic fields, respectively, which are tangential to the

boundary. The tangential components of the electromagnetic

fields are given in terms of the normal and tangential deriva-

tives of the axial components as

(Hi = –jwsoeri 8EZ + P 8HZ
t k: – /32 a WEOETZ )at”

Inserting (32) into (31), we obtain

Thus the discretized equation obtained for (30) is

(32)

(33)

(34)

where the component of matrix [CB] is given by

Here &j/~ represents dE~/dt or b’If$/tX. 20 is the intrinsic

impedance of the free space. Combining (34) and (29), the

following matrix equation is derived:

[KA] -[GA] JO]

[KB] al [GB:

, [0] [0]

;[CB] [0]

{o}

[1={o}

{o}

{o}

[0]

‘0 [q [0]——

‘~jA] -[GA]

[KB] CW[GB]

(35)

where

Since k enters in (35) in a scattered manner, it can no longer

be solved by the standard eigenvalue solver but again by the

determinant search technique.

When the example of the optical waveguide (circular step-

index fiber) of Fig. 10 is solved by using (35), spurious

solutions are encountered along with the physical ones. This

also happens when solved by conventional BEM. As explained

by Sano [7], the reason behind the occurrence of these spurious

modes is the lack of continuity of tangential derivatives

of the axial fields. Sano has shown that incorporation of

the continuity of the tangential derivative of the fields does

suppress the spurious modes. As suggested by Sane, we used

8EZ/8t and 8HZ /tM as the unknowns instead of E= and Hz in

the original formulation and as expected, we have also found

the solutions completely free of the spurious ones. dEz /i%
and 8HZ /t%! are given by

E.(r) =
J

‘ 8EZ
o ~ dt+EZ(0)

H,(r) =
I

o’% dt + HZ(0) (36)

where Ez (0) and Hz(0) are the values of E= and Hz,
respectively, at the reference point taken on the boundary along

the integration path, and the integral is made from the reference

point to the point T. For a round path of integration forming

a closed loop

! (3Ez
—dt=O,

{

13EZ
—dt=O. (37)

r at p at

The new unknowns introduced are
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Incorporation of the new unknowns entails the following

continuity conditions along the interface boundary:

E-qo) = -@(o), H:(o) = H;(o),z

Making use of (36)–(38) and following the same way adopted

to obtain (35), the final system of matrix equation is derived as

[

[KA] -[GA] [0] [0]

[KB] ‘O [~B]cq[GB] –— [0]

+ [0] [0] ‘[’A] -[GA]

[;[W [01 [KB] a2[GB]

{o}

[1={o}
{o}
{o}

(39)

In (39), the matrices [Ki] and [Gi] (i = A, l?) are the

same, respectively, as given by the ones in (10), only that

the components of [KB] are now arranged as

r Kll –Klz . . . –KIM 1

LK21 –K22 .,. –K2M
[KB]= . . : :

KMI –K~f2 . . . –KMM I

and [~i] no longer remains a diagonal matrix, but takes the

form of the [L’] matrix shown at the bottom of the page. And

finally, [DB] is given by the second matrix at the bottom of

the page.

B. Applications

1) Circular Step-Index Fibers: The structure of the axially

symmetrical circular step- index fiber is shown in Fig. 10. For

symmetry, one quarter of the structure is taken for simulation

by the method described in subsection A. Fig. 11 shows the

1.010 -_ Exact [161 HE1l
0 Present (dominant)

1.008 -n
Present (higher)

1.006 “

SIm

HE31 ❑ ❑

❑

1.002 - ❑

❑

1.000
0 , , t ❑ , , , 1

4 8 12 16 20 24 28 32 36 40 44

rxllc

Fig. 12. Dispersion curve for dominant and higher modes for a circular

step-index fiber.

division of boundary of the quarter of the circular cross section

into ten constant elements and the allocation of the same

number of simulated charges. Note that the simulated charges

are allocated individually for both the exterior and the interior

domain on outside of the respective domain. The computation

is carried out by assigning values of @ for a certain range

of interest and solving (39) by determinant search technique.

The dispersion curves obtained for the dominant and the next

higher modes are shown in Fig. 12. A good degree of accuracy

of the solutions are reflected from the comparison of the

computed solutions with the exact ones [16]. Comparison is

shown only for the dominant mode since this is the only

mode for which exact solutions are available so far. Field

distributions for the two modes are shown in Figs. 13 and 14,

respectively. In order to have an idea about the computational

measure of (39), it might as well be worth mentioning here

about the CPU time taken by it. For example, to solve (39) by

determinant search technique for a matrix size of 40 x 40, the

CPU time taken is 0.76 sec. The computations are obtained

on a Dynus GAIA 275 AXP personal super computer (CPU:

275 MHz DEC 21 064A).

2) Rectangular Dielectric Waveguide: Next, employing

the same method as described in the previous subsection,

1.



KAGAWA et al.: REGULAR BOUNDARY INTEGRAL FORMULATION FOR ANALYSIS OF OPEN DIELECTfUC/OPTICAL WAVEGUIDES 1449

Electric Field Magnetic Field

Fig. 13. Field distributions for the HE11 mode,

EIectic Field Magnetic Field

Fig. 14. Field dktributions for the HE31 mode.

a= b=4.Omm

rtl = 1.50

n2 = 1.00

Fig. 15. Rectangulm dielectric waveguide.

simulation is carried out for the rectangular waveguide

shown in Fig. 15. Again, for symmetry, one quarter of the

rectangular structure is considered. As shown for the circular

step-index fiber, here, in the same way, the quarter of the

rectangular boundary is divided into 10 constant elements and

the same number of simulated charges are allocated outside

the domains along the boundary. Fig. 16 shows the dispersion

curves obtained for the modes E:l and E~l. For comparison,

solutions obtained by Goel [17] are also shown which are

found to be in well agreement with the ones obtained by the

present method. Field distributions for the two modes are

shown in Figs. 17 and 18, respectively.

V. CONCLUSION

We have developed and demonstrated the variational ex-

pressions for the regular BEM in the waveguide analysis.

Gradual developments of the formulations have been laid

down showing its versatile application in the waveguiding

problems starting from simple hollow waveguides dealing

with transverse modes to dielectric and optical waveguides

dealing with hybrid modes. As the singular points of the

1.0

0.8

0.6

P’
0.4

0.2

0.0 m;-”:). ..
0 1 2 3 4

B

Fig. 16. Dispersion curve for dominant and higher modes for a rectangular

dielectric wavegnide.

Fig. 17.

Electric Field Magnetic Field

Field distributions for the E~l mode.

Electric Field

Fig. 18. Field distributions for the

Magnetic Fteld

,?3;1 mode.

fundamental solutions are located outside the domain, the

formulations are enriched with the merit of avoiding sin-

gular integrals. Moreover, the boundary element approach

has facilitated the formulations rendering an easy application

to unbounded structured problems. For the dielectric/optical

waveguide analysis, the formulation is fixed to yield spurious-

free solutions. What offsets the merits by a little is that as

the parameter to be resolved spreads out in the discretized

equation in a scattered manner, the formulations cannot be

solved by standard eigenvalue solver but by determinant search

technique.
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